Armor: American M1 Tank Seeks Purpose

Archives

June 6, 2024: The United States sent 31 M1 tanks to Ukraine. These tanks began arriving in September 2023 and were put to work, but not in ways that the mass media was able to understand or report on accurately. In the combat zone the Ukrainians quickly figured out how to best use their impressive new tanks. The Ukrainian crews had been trained before the tanks arrived and praised the efficient internally layout of the tanks and the number of useful capabilities of the M1. The battlefield in Ukraine is unlike any the M1 had ever operated in. Within a year at least five Abrams tanks were lost in combat, with another three damaged.

The Ukraine War has seen an unprecedented use of UAVs (Unmanned Aerial Vehicles) for reconnaissance, surveillance, and attacks from above. All tanks are more vulnerable to attacks from above. Sending dozens of quadcopter type UAVs against tanks turned out to be a decisive weapon if the tank was not equipped with metal screens and signal jammers to cause some or all of the UAVs to lose their control signals and fall to the ground or fly around aimlessly. It a tank was not prepared for UAV attack it was soon immobilized as its engine was damaged and disabled. That was because armor is thin or nonexistent over the engine compartment behind the turret. Normally the engine compartment was not vulnerable to attack. The extensive use of UAVs changed that. To make matters worse there were a lot of anti-vehicle mines used in Ukraine, which could damage or destroy a portion of the tracklaying system that tanks rely on for movement and mobility. Bust a track and the tank is immobilized until the crew or someone else can fix the track. This is a laborious process that can take over an hour and cannot be done while the tank is under attack by UAVs or just rifle and machine-gun fire.

The war in Ukraine has made it easier for the U.S. Army to get all the money wanted for upgrades to the American M1 tank force. The problem was few of those upgrades protected tank from UAVs.

The army had already developed and scrutinized a new SEP (System Enhancement Package) update called SEP4 (or SEPV4) for its M1 tanks. The last upgrade (Sep3) entered service in 2020 after years of testing. The new upgrade contains lots of incremental improvements of features the SEP3 tanks already have. This includes upgrades to the gunner’s sight and a meteorological sensor that collects data on weather conditions to improve accuracy of the main gun. The U.S. Army has led the world in tank gun accuracy for decades and the SEP4 features offer small improvements. In Ukraine the 120mm gun was rarely used because the Russians had few tanks left after they lost so many in the first year of the war.

Since the 1980s there have only been these incremental improvements for use against opponents who largely use T-72 upgrades that have not closed the wide effectiveness gap with the M1 and a few other similar tanks like Leopard 2, Challenger, LeClerc and Merkava. A major advantage of the M1 is that it has more combat experience than any other tank, especially its primary opponent: improved T-72/90 models. The most recent combat experience for these tanks has been in Ukraine, when the most modern Russian tank failed in a spectacular fashion against modern Western portable anti-tank weapons. These infantry weapons have a long history of success and to capitalize on that Poland has obtained lots of them and even built its own versions.

Noting the similar success of the M1, in 2021 Poland ordered 250 M1A2SEP3 tanks for $6 million each. These will be new tanks, not upgrades of older models and all will not be delivered until 2026. The M1A2SEP3 is also known as the M1A2C and is currently the most advanced version of the M1. The Poles consider this tank the best option to deal with any new Russian tank developments. The 66-ton M1A2C also includes the Israeli Trophy ADS (active defense system) which has proved itself in combat and is capable of defeating ATGMs (Anti-tank guided missiles) and RPGs (rocket propelled grenades). Deliveries began in late 2022 and be completed in about four years.

The 250 Polish M1A2s will complement the 240 used German Leopard 2A4s Poland obtained at bargain prices since 2002, along with a license to upgrade them to the 2A6 standard as the 62-ton Leopard 2PL. Poland is also upgrading over a hundred of its 380 older Russian T-72 tanks, most of them built in Poland during the Cold War and 225 PT-91s, a much-improved T-72 variant designed and built locally since 1995. Poland plans to retire its remaining T-72s as the M1A2s arrive and the experience of these tanks in the Ukraine fighting will accelerate the retirement process. Poland has also ordered a thousand modern K-2 tanks from South Korea, most of them to be built in Poland.

Currently the most advanced Russian tank in service is the T-72B3, which is considered as good as the T-90, a 48-ton T-72 upgrade introduced in 1993 as the T-72BU but had a marketing name change to T-90. Over 3,200 were built and most were exported to India where they were produced under license. The 45-ton T-72B3 is cheaper and considered by Russian commanders and crews as equal to the more expensive T-90. Russia used to have about 2,000 T-72B3s, with most of its 590 T-90s in storage and T-72B3 used for active-duty units. Russia lost most of those T-72B3s in Ukraine since February 2022 along with many of the T-90s brought out of storage. Poland sees its M1 order as a prudent and successful investment.

Russia has a new tank design, the T-14, that improves on the T-72 but has not been in combat and is too expensive to purchase in large quantities. The 48-ton T-14 is a radical new design that appears quite impressive but has so far proved too complex and too expensive to mass produce. Mass production was supposed to have started in 2015 but technical problems and shrinking defense budgets halted that until 2020 when covid19 restrictions again delayed production until 2022. The war in Ukraine meant further delays. Russia has fewer than thirty development and pre-production T-14s which have been undergoing field tests with tank units since 2016. The T-14 has a three-man crew and a fully automated turret with the three crew all in an armored capsule under the turret.

The T-14 relies on a lot of new techs, some more advanced than any other Western tank has installed. Getting all that tech to work reliably has been a major problem. Getting all these problems fixed has made the T-14 more expensive, at about $4 million each. That’s twice what the reliable T-72B3 costs and Russian combat commanders and crews will have to be convinced that the T-14 works and is not just as reliable as the T-72B3, but also better at surviving in combat. Mass production to build less than two hundred more T-14s was supposed to begin in 2022. At the moment it looks like the Polish M1A2Cs will be the first American tanks to meet the T-14 in combat if Russia ever tries to make a move on Poland and has any new tanks to do it with. The Russians considered sending some T-14s to Ukraine but the list of known and potential defects made it obvious that T-14s in combat would be an embarrassment. There are major problems with the engine and electronics and now Russia can’t afford the money needed to deal with those problems.

The M1A2C tank is considered the best combat proven tank in the world. But there are many different models of M1s, which vary considerably in their combat capability. The earliest model is only about half as capable as the 2013 M1A2SEP2 model. The M1 is an old design with the first of 3,273 M1 tanks produced in 1978. This version had a 105mm gun. The first of 4,796 M1A1s with a 120mm gun and depleted uranium armor were produced in 1985. Another 221 were built for the U.S. Marines, 555 co-produced with Egypt and another 200 M1A1s sent to Egypt. Production of the M1A2 with its improved fire control system began in 1986, with 77 for the US Army, 315 for Saudi Arabia, and 218 for Kuwait. Another 600 M1s were upgraded to M1A2 standards. Deliveries of these upgrades began in 1998. In 2001 the army began to upgrade 240 M1A2 tanks as part of an ongoing SEP program with better thermal imaging and fire control equipment as well as communications and computer equipment that would allow tanks to operate a full color battlefield internet with each other, as well as headquarters and warplanes with similar equipment. By 2013 the army had upgraded 700 tanks to the M1A2SEP2 standard and built another 240 new M1A2SEP2 vehicles. The goal is to get at least 2,000 upgraded to M1A2SEP2 or higher in the 2020s.

So far over 10,000 American M1 tanks have been produced and most of them subsequently updated at least once, mainly in the 1990s. The army is planning to maintain and upgrade its M1 tank fleet of 7,000 vehicles into the 2030s. The M1 has already been in service since the 1980s and may become the first MBT (main battle tank) design to stay in service for half a century. Technically, some World War II tanks achieved that dubious goal but not in the service of a major power.

The SEP3 entered service in 2020 after being introduced for testing in 2017. SEP3 includes more improvements in the previous TUSK armor and RWS (remote weapons station) machine-gun upgrades, improved electricity generation and distribution for all the electronic gadgets that need recharging (or whatever), upgraded communications and networking and installation of VHMS (Vehicle Health Management System) and the use of LRMs (Line Replaceable Modules) to make it easier to upgrade or repair problems. The new communications features include ADL (Ammunition DataLink) to use airburst rounds. There is also an improved counter-IED (improvised explosive device) armor package, an upgraded FLIR (night vision heat sensor) and an APU (Auxiliary Power Unit) under armor to run electronics while stationary instead of using its fuel-thirsty turbine engine. The final addition was the Trophy ADS.

The SEP2/3 upgrades also expanded on MVP (Multifunction Vehicle Protection) features which includes external cameras that let the crew see what is going on outside at all times, day, or night and in bad weather.

The SEP program is continuous, upgrading existing M1A2 tanks to the new SEP3 standard as well as upgrading more M1A2SEPs to the SEP2 level. These upgrades keep the M1, or at least some of them, competitive with more recently designed and built tanks. The U.S. (mainly the army) has over a thousand of the SEP2 upgraded M1A2s and is getting as many of those upgraded to SEP3 as the budget allows.

The original M1A2SEP was developed in the late 1990s by upgrading protection and a few other minor fixes. These were followed after 2003’s combat experience in Iraq with TUSK (Tank Urban Survival Kit) and evolved into the SEP2 upgrade. TUSK was installed on hundreds of tanks headed for Iraq as well as several hundred more M1s that had battle damage repaired and TUSK upgrades installed at the same time.

TUSK entered service in 2007 with reactive armor panels for the side and rear of the tank, to provide added protection from RPGs. A slat armor panel protects the engine exhaust outlet of the tank from RPGs. A 1.5-ton belly armor kit, which can be installed in two hours, provides additional protection from mines and large bombs. Enhancements also include night vision for all crew members. There is also a telephone added to the side of the tank, so that infantry can more easily communicate with the crew when the tank is "buttoned up" (all hatches closed). The complete TUSK kit costs about $500,000 per vehicle and requires about twelve hours to install all the components. Later additions to TUSK included a rear-view camera for the driver and RWS so the commanders' 12.7mm machine-gun can be operated from inside the tank. This is particularly useful if the tank is taking a lot of small arms fire. This led to providing all-round vidcam views of what was going on outside the tank.

The M1A2SEP2 made most of the TUSK items standard and added more improvements like the RWS for the 12.7mm machine-gun as standard, as well in computer hardware, including color flat screen displays for the crew and software, including a new operating system along with improved TUSK ERA (explosive reactive armor), making the external phone standard and upgrading the transmission to make it more reliable.

The electronics on the M1 have undergone several upgrades so far, in addition to new ammo types for the main gun. A major enhancement was depleted uranium armor, which made the M1 virtually invulnerable from the front.

The one remaining item in need of major improvement is the 1,500-horsepower gas turbine engine. Past improvements here included electronic monitors on many engine components, an electronic logbook (to record all pertinent engine activity), and a maintenance program that makes the most of all this data. If the engine is monitored closely and constantly, it's possible to carry out maintenance in a timelier (before something fails) manner. The army would also like to develop an improved (more efficient and less expensive to maintain) engine, but that is also a costly item they can't afford at the moment.

MVP can also link to audio sensors that work with video sensors to automatically detect where enemy fire is coming from. The United States tested MVP on their M2 IFV (Infantry Fighting Vehicle). New anti-tank weapons are always being developed and the army wants to at least be able to afford new gear to deal with new threats. One threat that is currently ignored is top attack warheads (that put a shaped charge type attack against the thin top armor). There are also new types of mines and electronic threats. If the M1 is to survive for half a century it will have to evolve, as well as endure. The M1A2C is an evolutionary design compared to the T-14 which is a revolutionary design with a lot of new techs introduced at once.

 

X

ad

Help Keep Us From Drying Up

We need your help! Our subscription base has slowly been dwindling.

Each month we count on your contributions. You can support us in the following ways:

  1. Make sure you spread the word about us. Two ways to do that are to like us on Facebook and follow us on Twitter.
  2. Subscribe to our daily newsletter. We’ll send the news to your email box, and you don’t have to come to the site unless you want to read columns or see photos.
  3. You can contribute to the health of StrategyPage.
Subscribe   Contribute   Close